sábado, 19 de abril de 2008

Jorge Ben Jor: Alcohol



Rei do Swing. Salve Jorge. Meu cantor preferido ao lado de Tim.

Professores Generalistas e a Matemática nas Séries Iniciais: uma Reflexão


1
Professores Generalistas e a Matemática nas Séries Iniciais: uma Reflexão
Adriana Mascarenhas Mattos Bulos
Wilson Pereira de Jesus (orientador)
Mestrado em Ensino, Filosofia e História das Ciências
UFBA / UEFS – Bahia
Introdução
Os Parâmetros Curriculares Nacionais (PCNs) para o ensino da Matemática, a partir da sua
publicação, vêm direcionando as discussões sobre o ensino dessa disciplina no Brasil;
provocando, desde então, reflexões, adesões ou indiferença com relação ao que é preconizado
para o ensino da Matemática na escola de Educação Básica.
É nesse contexto de adoção dos PCNs, como diretrizes para o ensino da Matemática para as
séries iniciais do Ensino Fundamental, que resolvemos estudar a formação do professor
generalista, tendo como foco o currículo do Curso de Pedagogia, de uma universidade do
estado da Bahia, a UEFS (Universidade Estadual de Feira de Santana), no que toca à
formação matemática do pedagogo.
Segundo os PCNs para a Matemática nas séries iniciais do Ensino Fundamental,
o conhecimento da história dos conceitos matemáticos precisa fazer parte da
formação de professores para que tenham elementos que lhes permitam mostrar aos
alunos a Matemática como ciência que não trata de verdades eternas, infalíveis e
imutáveis, mas como ciência dinâmica, sempre aberta à incorporação de novos
conhecimentos [...] (Brasil, 2000: p. 37)
O professor precisa identificar as principais características dessa ciência, de seus métodos, de
suas ramificações e aplicações; conhecer a história de vida dos seus alunos; ter clareza de suas
próprias concepções sobre a Matemática, uma vez que a prática em sala de aula, as escolhas
pedagógicas, a definição de objetivos e conteúdos de ensino e as formas de avaliação estão
intimamente ligadas a essas concepções; superar os obstáculos encontrados na construção dos
conceitos, transformando o saber científico em saber escolar, não deixando de considerar o
contexto sócio-cultural do educando.
Os cursos de Pedagogia estão cuidando da formação dos professores tendo em vista esse
perfil preconizado pelos PCNs? Se sim, em qual medida? O nosso propósito é analisar, além
2
dos PCNs, as Diretrizes Curriculares Nacionais para o Curso de Pedagogia – Parecer,
CNE/CP Nº 5/2005 e o currículo atual do Curso de Pedagogia da UEFS, tendo em perspectiva
a formação matemática do licenciado em pedagogia.
A matemática na formação do professor generalista
A formação inicial dos professores generalistas, através dos cursos de Licenciatura em
Pedagogia ou Normal Superior, busca abranger: a docência, até a quarta série do Ensino
Fundamental; a participação na gestão; e a avaliação de sistemas e instituições de ensino em
geral.
O nosso estudo visa analisar a formação inicial de professores em relação à docência,
considerando que cada professor possui concepções acerca do que é aprender, conhecimento,
educação, ensino, ciência... Tais concepções e as crenças a elas vinculadas são “filtros”, que
vão caracterizar a prática docente na sala de aula.
Uma análise da formação básica em Matemática dos professores que atuam/atuarão nas séries
iniciais do Ensino Fundamental norteará esse estudo. Tentaremos configurar nosso problema
de pesquisa em algumas questões: Como anda a formação básica dos professores generalistas?
Esses professores egressam das universidades com competências básicas para atuarem nas
séries iniciais do Ensino Fundamental? De que maneira esses professores generalistas têm
acesso aos conteúdos que trabalham na sua prática docente? Como os professores generalistas
constroem o conhecimento didático do conteúdo a fim de que aconteça de fato o processo de
ensino e aprendizagem de forma eficiente em suas práticas?
Para sermos ainda mais específicos: Como anda a formação básica em Matemática dos
professores generalistas? Esses professores egressam das universidades com competências
matemáticas básicas para atuarem nas séries iniciais do Ensino Fundamental? De que maneira
esses professores generalistas têm acesso aos conteúdos matemáticos que trabalham na sua
prática docente? Como os professores constroem o conhecimento didático dos conteúdos
matemáticos a fim de que aconteça de fato o processo de ensino e aprendizagem de forma
eficiente em suas práticas?
Os PCNs para a área de Matemática no Ensino Fundamental assumem alguns princípios, a
saber: destacam essa disciplina como importante na construção da cidadania; disciplina ao
3
alcance de todos; construção e apropriação do conhecimento; relação das observações do
mundo real com representações e estas com os princípios e conceitos matemáticos. Além
disso, destacam que a aprendizagem está ligada à compreensão; os conteúdos são organizados
pela lógica da Matemática; a utilização dos recursos didáticos e a avaliação processual.
Nas Diretrizes Curriculares Nacionais para o Curso de Pedagogia – Parecer, CNE/CP Nº
5/2005, considera-se que é importante que, nos anos iniciais do Ensino Fundamental, os
alunos devem ser instruídos na língua escrita e na linguagem matemática.
Com base nessa consideração, firma-se a relevância desse nosso estudo da “formação
matemática dos professores que atuam/atuarão nas séries iniciais do Ensino Fundamental. A
preocupação com essa formação abrange todas as comunidades de Educação Matemática,
visto que Abrantes et al (1999) acredita que “aprender matemática é um direito básico de
todas as pessoas [...] e uma resposta a necessidades individuais e sociais” (apud LOUREIRO,
2004).
Nas suas experiências durante a escola básica, enquanto alunos, os futuros professores foram
construindo suas crenças e concepções acerca da matemática e do seu ensino, sejam estas
positivas ou negativas. Assim, urge a necessidade de uma formação centrada no
desenvolvimento da predisposição e aptidão para raciocinar matematicamente, além do gosto
pela disciplina.
Serrazina (2005) afirma que quando
os futuros professores chegam à sua formação inicial possuem um modelo implícito,
um conhecimento dos conteúdos matemáticos que têm de ensinar, adquiridos
durante a sua escolarização, bem como um conhecimento didático vivido durante a
sua experiência como alunos (p.307).
Essa vivência, normalmente, é tradicional, imposta, parcial e cheia de incompreensões.
A formação deve favorecer o desenvolvimento de concepções, atitudes e capacidades
positivas, como o “gosto por aprender, a autonomia, a vontade e o gosto por enfrentar
dificuldades, a persistência, a valorização da ajuda de outro, a capacidade de procurar ajuda, a
confiança nas idéias próprias...” (LOUREIRO, 2004: p. 93-94). Essa formação deve encorajar
o futuro professor a refletir, questionando suas crenças e concepções, de forma que possa vir a
alterá-las. Assim, possibilitará a esse professor romper com várias crenças construídas e ver a
Matemática de uma maneira diferente, construindo novas concepções sobre fazer, aprender e
ensinar Matemática.
4
Com isso, vale uma reflexão acerca de algumas questões voltadas para essa formação: de que
maneira as disciplinas relacionadas à Matemática contribuem para a formação matemática de
professores das séries iniciais do Ensino Fundamental? Os alunos-professores possuem os
conhecimentos matemáticos básicos para lecionar essa disciplina específica que lhes compete
na sua função? A educação matemática básica garante esses conhecimentos?
Conhecimento Matemático do professor generalista
O conhecimento matemático tem grande importância na formação desses professores, sem
dissociar-se da didática. É preciso fazer matemática, saber como e porquê ensinar essa
disciplina. A formação centrada no desenvolvimento da pesquisa, da investigação e do
questionamento busca melhorar a habilidade de ensinar.
Na verdade, ensinar só se aprende ensinando, e toda prática tem uma teoria que a sustenta. É
importante que a teoria sobre a qual nos embasemos, potencialize em nós a capacidade de
avaliação e raciocínio crítico.
Qualquer professor consegue desenvolver bons momentos em sala de aula, porém, os que têm
uma postura crítica, preconizada pelos PCNs, certamente, sentir-se-ão mais seguros e
conseguem responder a questionamentos dos alunos. Assim, não perderão a oportunidade de
desenvolver vários conteúdos a partir dessas questões, valorizando os conhecimentos prévios
dos educandos.
“Para muitos futuros professores, a matemática é vista como um conjunto de regras e
procedimentos desligados” (LOUREIRO, 2004: p. 101). Geralmente, a linguagem é vista
como um processo e a matemática, como atividades isoladas, não valorizando sua relação
com outras disciplinas e situações do nosso dia-a-dia.
Em relação ao Brasil, Santos (1989) ressalta que a formação básica de Matemática dos futuros
professores do Ensino Fundamental I apresenta sérios problemas1. Os alunos, muitas vezes,
tornam-se professores generalistas despreparados, sem a capacitação profissional necessária,
pois não dominam os conteúdos essenciais, são inseguros, não relacionam os conteúdos
matemáticos com a realidade e em conseqüência desenvolvem uma atitude negativa em
1 Os Parâmetros Curriculares Nacionais de Matemática relacionam parte dos problemas referentes ao ensino de
matemática ao processo de formação dos professores. (BRASIL, 2000: p. 24)
5
relação ao estudo, influenciando na formação dos seus alunos das séries iniciais do Ensino
Fundamental.
Santos (1989) apresenta como sugestão para resolver este problema uma proposta de um
método de trabalho baseado em questionamentos e reflexões em que o professor deixe de ser
um simples transmissor de conhecimento e passe a desenvolver uma atitude de orientador e
debatedor, analisando os erros dos alunos, propondo alternativas para a correção das más
interpretações.
Uma análise feita por Sztajn (2000) comparando a formação de professores generalistas da
PUC-Rio e da Universidade da Geórgia nos Estados Unidos, em relação à prática de ensino
em matemática na formação dos futuros professores das primeiras séries de escolarização das
crianças no Brasil, detectou que a formação dos professores primários na Universidade da
Geórgia envolve a prática de ensino em matemática.
Nessa análise, Sztajn percebeu que a maior diferença entre o curso no Brasil e o dos Estados
Unidos está na estrutura e na organização. Na universidade da Geórgia, os alunos do
Programa de Educação Infantil têm a oportunidade de trabalhar especificamente com a prática
de matemática com as crianças.
Verifica-se, nessa análise, que no ensino de metodologia da matemática é exigido do
professor primário que participe de cursos de conteúdos matemáticos na universidade,
correspondentes ao conteúdo proposto para o Ensino Médio brasileiro. Entretanto, difere da
situação brasileira, em virtude de que os alunos que chegam aos cursos de métodos
matemáticos passaram recentemente por cursos de matemática desenhados especificamente
para futuros professores, com a finalidade de tratar importantes aspectos da matemática
elementar, apresentados de modo compatível com a visão atual sobre o ensino-aprendizagem
de matemática.
Os profissionais refletem sobre a experiência, buscando conhecer melhor como as crianças
aprendem matemática e como essa aprendizagem se relaciona com o que se discute nas aulas
de metodologia da matemática.
Com relação às atitudes, Sztajn verificou que os alunos brasileiros verbalizam mais, fazem
mais perguntas e estão preparados sempre para discussão, visto que esse aspecto da cultura
americana dificulta a troca de idéias em sala de aula. No Brasil, essa situação pode ser
6
facilitada através da cultura existente na nossa sociedade, que favorece a interação alunoaluno
e professor-aluno.
A dinâmica social demanda da educação escolar um constante estado de atenção para com as
transformações, visto que os educandos têm tido acesso muito rápido às inovações que
ocorrem nos espaços de educação não-formal. Assim, o indivíduo entra em processo de
formação, através da educação informal.
É importante ressaltar, quando se fala do ensino de matemática e da sua necessidade, a qual
matemática está-se referindo: à pura ou à aplicada. Segundo Santaló (1996: p. 14), “opina-se
que a matemática que necessitam todos os cidadãos deve ser uma mistura combinada e bem
equilibrada de matemática pura e aplicada, ou de matemática como filosofia e de matemática
como instrumento de cálculo”.
Convém acrescentar que pensamos que a necessidade do estudo da matemática na escola se
dá principalmente pelo seu valor cultural, e não apenas pelo seu valor escolar ou instrumental.
Didática da Matemática
A Didática da Matemática também desempenha o papel de levar o aluno-professor a refletir
acerca do valor cultural e instrumental da matemática para o educando, buscando favorecer
um equilíbrio entre a formação e a informação. Além de analisar acerca dos conteúdos que
têm se tornado “obsoletos”, trocando-os por conteúdos e metodologias adequados, que
possibilitem aos indivíduos a capacidade de pensar e construir conhecimentos, ao invés de
memorizar conteúdos que os façam intelectualmente passivos. É preciso “ensinar a aprender”,
propiciando o desenvolvimento do raciocínio lógico e dedutivo. (GÁLVEZ, 1996: p. 31-32).
Segundo os PCNs, atualmente, os estudos alertam para a importância de uma metodologia
embasada na resolução de problemas 2 , quando o indivíduo desenvolve habilidades para
resolver (criando estratégias próprias de resolução) e propor problemas. Nessa metodologia,
“o ponto de partida da atividade matemática não é a definição, mas o problema” (BRASIL,
2000: p. 43). Assim, a matemática deixa de ser um fim e torna-se um meio eficaz no
desenvolvimento cognitivo, afetivo e social do indivíduo.
2 A metodologia através da resolução de problemas tem sido refletida por estudiosos como Charnay, Gómez,
Polya, dentre outros.
7
O pioneiro da Didática da Matemática na França, Georges Glaeser, afirma que as opiniões no
campo da Didática da Matemática devem estar alicerçadas na experiência, pois para entender
os processos de ensino e aprendizagem é preciso o contato direto professor-aluno (LOPES,
2000).
Em 1971, Glaeser assumiu a direção do IREM (Instituto de Pesquisa em Educação
Matemática) de Estrasburgo e instituiu a pós-graduação em Didática da Matemática, que
resultou em transformações na formação do professor.
De acordo com Glaeser, para exercer bem a profissão de professor é condição necessária ter
conhecimentos profundos sobre o conteúdo matemático, além do “saber-fazer” específico de
suas disciplinas. Entretanto, esse conhecimento não é suficiente. Para tanto, a disciplina
Didática da Matemática deveria ser introduzida nos Cursos de formação de professores.
Com a introdução da nova disciplina Didática da Matemática para professores da
Universidade Louis Pasteur, Glaeser empenhou-se para o seu reconhecimento na instituição
universitária. Para ministrar os cursos na habilitação da Didática da Matemática, ele deu
prioridade à História da Matemática em uma pesquisa didática, enfatizando o lugar e o papel
da História no ensino.
Quanto ao curso de formação de professores, especificamente no de Licenciatura em
Pedagogia da UEFS, atualmente, é oferecida apenas uma disciplina relacionada à Matemática:
Fundamentos e Ensino da Matemática para a Educação Infantil e Anos Iniciais do Ensino
Fundamental, com carga horária de 60 horas (num curso de 3200 horas) que substitui a
disciplina Didática da Matemática, do currículo anterior.
A reflexão acerca dessa situação é muito importante, visto que uma disciplina oferecida nesse
curto espaço de tempo, certamente, não contemplará uma reflexão acerca do valor cultural e
instrumental da matemática por parte do aluno-professor; muito menos, contemplará uma
construção de conteúdos matemáticos necessários para a sua atuação nas salas de aula de 1ª à
4ª séries, impossibilitando a criação de metodologias que favoreçam essa construção por parte
dos educandos.
Conhecimento Profissional
8
Os professores, para exercerem o seu papel, fazem jus a uma formação adequada para
lecionar as disciplinas ou saberes que lhe são propostos; além de um conjunto básico de
competências orientadas para a sua prática letiva, designados conhecimento profissional.
O conhecimento profissional, segundo Ponte (1998) está orientado para a ação e se desdobra
sobre quatro domínios inter-relacionados com aspectos do conhecimento pessoal e informal
da vida cotidiana do professor: o conhecimento dos conteúdos de ensino; o conhecimento do
currículo; o conhecimento do aluno; e o conhecimento do processo instrucional.
O processo de formação de professores nos diversos níveis (formação inicial, formação
contínua, formação especializada) é um processo de desenvolvimento profissional que
envolve o desenvolvimento de potencialidades de cada professor e a construção de novos
saberes marcados pelas dinâmicas sociais.
O conhecimento profissional dos professores se tece por meio da participação nas práticas
educativas, ou seja, nos processos de formação de professores a prática torna-se um elemento
essencial. Entretanto, a prática por si só não garante a qualidade na formação. É preciso
investigar as práticas educacionais.
Ponte (1998) relata que num curso de formação contínua de professores de matemática do
Departamento de Educação da FCUL (LISBOA), que tem como público-alvo professores de
2º e 3º ciclo do ensino básico e do ensino secundário, foram realizadas atividades de
investigação com o propósito de os alunos entrarem em contato com aspectos da experiência
matemática.
Essa experiência de trabalho investigativo da atividade matemática constituiu-se em um tipo
de trabalho de formação que envolveu as seguintes fases: definição de uma situação a
investigar; a formulação de questões de interesse; a elaboração de conjecturas; o seu teste; e,
caso estes testes se revelassem positivos, a procura de uma demonstração convincente. Neste
trabalho, o ponto culminante constituiu-se em corresponder os objetivos propostos com os
resultados conseguidos identificando-se qual a origem de eventuais dificuldades.
Essa integração do trabalho investigativo na formação do professor envolveu um contato
profissional com a prática, fundamental para os futuros professores. Isso porque os formandos
compreendem a sua própria aprendizagem por meio da investigação e análise e,
9
conseqüentemente, compreendem esses processos nos próprios alunos (Ponte, 1998).
Acreditamos que a importância desse processo de aprendizagem significativa caracteriza-se
pelo fato da aprendizagem se dar no contexto do real.
A investigação educacional é um elemento importante porque contribui para a construção do
conhecimento por meio da prática profissional; em virtude da necessidade de manusear
conceitos, variáveis e hipóteses de uma maneira mais profunda e mais exigente.
Atualmente, segundo Zunino (1995), coexistem duas concepções antagônicas a respeito do
processo de ensino e aprendizagem dos conteúdos matemáticos propostos na escola. Enquanto
numa concepção tradicional as crianças assimilam os conteúdos matemáticos por meio do
processo de explicação, repetição e memorização, na outra, construtivista, a metodologia
utilizada na forma de ensinar oferece às crianças oportunidades reais de assimilar o
conhecimento, baseadas na descoberta, investigação, discussão e interpretação.
O que se percebe é que em algumas escolas não se leva em consideração o que as crianças
pensam. Há uma separação entre a forma com que se atua dentro da escola e o que se faz fora
dela, ou seja, no processo de ensino e aprendizagem existe uma separação entre o ambiente
escolar e a vida cotidiana.
Numa análise feita por Zunino (1995) a criança não participa do aprendizado que está
vinculado ao conhecimento escolar; os procedimentos didáticos utilizados inadequados às
estratégias de aprendizagem desenvolvidas pelas crianças têm como resultado a dificuldade
dos alunos em compreenderem os conteúdos de matemática. Mas, como utilizar
procedimentos didáticos adequados sem ter domínio dos conteúdos a serem trabalhados, ou
mesmo sem consciência crítica de uma teoria que sedimente a prática docente?
Conclusão
A metodologia e os conteúdos ensinados na escola devem se adaptar às mudanças que
ocorrem na sociedade, procurando estar associados à realidade ambiental, auxiliando o aluno
a compreender o mundo.
Os educadores devem trabalhar buscando a interação entre os ensinamentos e o meio
ambiente; pois as facilidades advindas com a tecnologia permitem o acesso a grande
10
quantidade de informações que exigem do homem atual, habilidades e destrezas a serem
desenvolvidas para atuar num mundo complexo.
Dessa forma, a escola deve buscar capacitar os alunos para se sintonizarem com processo em
constante mutação, que caracteriza o mundo atual. Porém, para que haja essa capacitação nas
escolas, os cursos de formação de professores generalistas precisam dar conta de uma
formação que contemple o perfil preconizado pelos PCNs na introdução desse trabalho.
11
Bibliografia
BRASIL. Secretaria de Educação Fundamental. Parâmetros Curriculares Nacionais:
Matemática. 2a edição. Rio de Janeiro: DP&A, 2000.
GÁLVEZ, Grécia. A didática da matemática. In: PARRA, Cecília, et. al. Didática da
Matemática: reflexões psicopedagógicas. Porto Alegre – RS: Artes Médicas, 1996. P. 26-47.
LOPES, Maria Laura M. L. Didática da Matemática e a Atuação Pioneira de Georges
Glaeser. In: GEPEM, nº 37, Agosto, 2000.
PIRES, Yara Maria Cunha e FERREIRA, Eunice Freitas. Projeto para implantação do
Curso de Pedagogia. Feira de Santana: Departamento de Educação/UEFS, mimeo, 1983.
PONTE, João Pedro da. Didácticas específicas e construção do conhecimento profissional.
Conferência no IV Congresso de SPCE – Aveiro – Fevereiro, 1998.
SANTALÓ, Luis A. Matemática para não-matemáticos. In: PARRA, Cecília, et. al.
Didática da Matemática: reflexões psicopedagógicas. Porto Alegre – RS: Artes Médicas,
1996. P. 11-25.
SANTOS, Vânia Maria Pereira dos. Dificuldades em Matemática dos Futuros Professores
Primários. In: GEPEM, nº 27, ano XIV, 1o semestre, 1989.
SERRAZINA, Lurdes. A formação para o ensino da Matemática nos primeiros anos: que
perspectivas? In: SANTOS, Leonor; CANAVARRO, Ana Paula; BROCARDO, Joana.
Educação Matemática: caminhos e encruzilhadas. Actas do Encontro Internacional em
homenagem a Paulo Abrantes. Lisboa, Portugal: julho, 2005.
SILVA, Antonia Almeida e TRINDADE, Syomara Assuite. Projeto de Reestruturação do
Currículo do Curso de Pedagogia. Feira de Santana: Departamento de Educação/UEFS,
mimeo, 2002.
SZTAJN, Paola. Prática de Ensino de Matemática e Formação do Professor das Séries
Iniciais. In: GEPEM, nº 37, Agosto, 2000.
12
ZUNINO, Délia Lerner. A Matemática na Escola: aqui e agora. 2a edição. Porto Alegre –
RS: Artes Médicas, 1995.
http://www.fae.ufmg.br:8080/ebrapem/completos/01-13.pdf

O Curso Normal Superior, (não foi extinto).



Governo não extingue os cursos de Normal Superior

Nos últimos dias têm sido vinculadas nos meios de comunicação matérias divulgando o título "O governo extingue cursos normais superiores do País", assim, cabe a indagação: como um órgão oficial intenciona acabar com um curso de graduação que tem respaldo legal pela Lei de Diretrizes e Bases da Educação Brasileira 9394/96 (Lei maior da área da Educação).

Aponto para esclarecimentos os seguintes artigos da LDB: 62 e 63, conforme explicitado abaixo: Art. 62. A formação de docentes para atuar na educação básica far-se-á em nível superior, em curso de licenciatura, de graduação plena, em Universidades e Institutos Superiores de Educação, admitida como formação mínima para o exercício do magistério na educação infantil e nas quatro primeiras séries do ensino fundamental, a oferecida em nível médio, na modalidade normal. O curso Normal Superior é um curso de Licenciatura Plena conforme as exigências da Lei, assim não é possível acabar com um curso superior que cumpre a legislação. Art. 63. Os Institutos Superiores de Educação manterão I - cursos formadores de profissionais para a educação básica, inclusive o curso normal superior, destinado à formação de docentes para a educação infantil e para as primeiras séries do ensino fundamental.

O artigo 63 é enfático, pois o Curso Normal Superior é citado na LDB 9394/96 como "o curso" destinado à formação de professores para a educação infantil e séries iniciais do ensino fundamental. Também não é recente a informação de que o curso de Pedagogia forma diretores, inspetores, supervisores e orientadores em nível de pós-graduação. O artigo da LDB 9394 que foi promulgada no ano de 1996, especificamente no Art. 64, trata especificamente dos cursos de Pedagogia: A formação de profissionais de educação para administração, planejamento, supervisão e orientação educacional para educação básica, será feita em cursos de graduação em Pedagogia ou em nível de pós-graduação, a critério da instituição de ensino, garantida, nesta formação, a base comum nacional. A Lei distingue portanto, os cursos de Pedagogia daqueles destinados à formação de professores.

Dois aspectos são importantes enfatizar neste artigo para esclarecimento do leitor, o MEC expõe "a critério da instituição de ensino", então como um órgão nacional pode acabar com um curso que ele mesmo Autorizou e Reconheceu, sem levar em conta a autonomia das instituições de ensino superior que ele mesmo delegou? É preciso atentar-se ainda ao fato de que a lei distingue (e não extingue) os Cursos Normal Superior dos Cursos de Pedagogia. Observem ainda a Resolução do Conselho Nacional de Educação/Conselho Pleno CNE/CP nº. 1/2002, quando abre espaço para as instituições decidirem pela substituição dos cursos Normais Superiores. 3º As instituições de ensino superior decidirão pela aplicação, ou não, das Diretrizes Curriculares Nacionais para a Formação de Professores da Educação Básica, em nível superior, aos cursos de Licenciatura, de graduação plena. Brasília (DF), 13 de setembro de 2005.

O que quer dizer que o MEC oferece a opção para a instituição aceitar ou não a transposição dos Cursos de Pedagogia para os cursos Normais Superiores. Ou ainda continuar com os dois, caso haja demanda de alunos, como ocorre em estados mais carentes do país. Vale ressaltar que há equívocos por parte dos meios de comunicação que divulgam tais notícias, quando refere-se que as Normas de extinção do Curso Normal Superior foram publicadas no Diário Oficial da União em abril, as DCNS (Diretrizes Curriculares dos Cursos de Pedagogia) é que foram aprovadas no início deste ano, analisemos os trechos a seguir: Art. 12. Concluintes do Curso de Pedagogia ou Normal Superior que, no regime das normas anteriores a esta Resolução, tenham cursado uma das habilitações, a saber Educação Infantil ou anos iniciais do Ensino Fundamental, e que pretendam complementar seus estudos na área não cursada poderão fazê-lo.

É relevante esclarecer que as instituições que quiserem optar por um curso só, poderão enviar seus projetos pedagógicos ao MEC, analisem a seguir: Art. 11. As instituições de educação superior que mantêm cursos autorizados como Normal Superior e que pretenderem a transformação em curso de Pedagogia, deverão elaborar novo projeto pedagógico, obedecendo ao contido nesta Resolução. § 1º O novo projeto pedagógico deverá ser protocolado junto ao órgão competente do respectivo sistema ensino, no prazo máximo de 1 (um) ano, a contar da data da publicação desta Resolução.

O sistema no MEC responsável por protocolar os pedidos de mudança é o sistema SAPIENS (Sistema de Acompanhamentos de Processos de Instituições de Ensino Superior/MEC), e, posteriormente envia uma comissão de especialistas para análise do projeto in loco, acredito como avaliadora do INEP/MEC (há 04 anos) que o mesmo possa ter divulgado a lista das 40 instituições que fizeram a opção por um curso só. Os parágrafos 2º e 3º das DCNS (Diretrizes Curriculares Nacionais do Curso de Pedagogia) garantem os direitos dos alunos que ingressaram anterior as DCNS, o que pode ser explicitado na seqüência.§ 2º O novo projeto pedagógico alcançará todos os alunos que iniciarem seu curso a partir do processo seletivo seguinte ao período letivo em que for implantado.



* Márcia Helena de Lima- Possui o curso de Graduação em Pedagogia pela Universidade Federal de Uberlândia (1994) e mestrado em Geografia Escolar pela Universidade Federal de Uberlândia (2002). Tem experiência na área de Educação, com ênfase em Política Educacional, Sociologia da Educação e Formação Docente, atuando principalmente nos seguintes temas: Políticas Públicas da Educação Educação Popular e Educação no Campo. Docente do ensino superior nas áreas de Políticas Públicas, Metodologia do Ensino Superior e Metodologia de Pesquisa. Atua como avaliadora de curso do INEP/MEC para fins de autorização, reconhecimento e recredenciamento, e recentemente credenciamento de IES. Atua como Assessora para Credenciamento de IES e Autorização de Cursos. Coordena cursos de Pós-Graduação lato sensu em Uberlândia e Região. Tem experiência como Diretora Acadêmica.

Publicada em: 22/9/2006

Fonte:SINEPE/RS - SINDICATO DOS ESTABELECIMENTOS DO ENSINO PRIVADO NO ESTADO DO RIO GRANDE DO SUL

sexta-feira, 18 de abril de 2008

Efeito Dominó. filme


A trama se baseia no lendário roubo a banco na Baker Street, rua do centro comercial londrino, em 1971. Por uma determinação governamental, a história permaneceu sigilosa por 35 anos. Trata-se do maior assalto da história da Inglaterra - ninguém foi preso nem o dinheiro foi recuperado. A história gira em torno principalmente dos segredos de um cofre, os escândalos que se seguiram ao caso e as vidas que se perderam na tentativa de manter o caso em segredo.

Gênero: Suspense
Lançamento: 25 de Abr, 2008
Estrelando: Jason Statham, Saffron Burrows, Stephen Campbell Moore, Daniel Mays, James Faulkner, Alki David
Dirigido por: Roger Donaldson
Produzido por: Steve Chasman, Charles Roven
Veja o trailler deste filme abaixo.

Homem de Ferro. O filme.

Após sofrer um acidente, o bilionário inventor Tony Stark (Robert Downey Jr.) cria uma armadura de ferro para mantê-lo vivo. Com o sucesso de seu invento, ele decide usar a alta tecnologia de sua armadura para combater o crime nos Estados Unidos.

Gênero: Ação

Lançamento: 30 de Abr, 2008



Se você gosta de super herois mravel dia 30 de abril nos cinemas.

A Procura da Felicidade. (Will Smith) Filme.

Outro filme que se você puder assista. A Procura da Felicidade.
Baseado numa história real, À Procura da Felicidade é o tipo de filme perfeito para os que gostam de um drama bem triste, no qual o protagonista, geralmente carismático, sofre muito. Mas muito mesmo. O roteiro é inspirado na história real de Christopher Paul Gardner (Will Smith), que virou um milionário após passar maus bocados na cidade de São Francisco. Exatamente por isso, o final feliz é esperado. Mesmo assim, o filme é capaz de envolver o espectador, que se pega torcendo pelo protagonista mesmo sem querer.



Esta cena acima, é basicamnete a essência deste filme. Não se limite, e não limite os outros.

Crash - No limite. O filme (trailler).

Bom hoje é sexta-feira. Se você não assistiu este filme vale a pena dar uma conferida. Nas locadoras.
Sinopse: Crash - No Limite: Trata-se de um filme que praticamente não possui um protagonista, pois todos os atores o são! Nos mostra a vida real, nos faz refletir sobre nós como seres humanos,nossas dúvidas, medos, preconceitos e atitudes, no decorrer da vida. Seus assuntos são fortes, muitas vezes nos choca, mas não seria esse o objetivo desse filme? Muitas vezes só assim, dessa maneira chocante nós, seres humanos muitas vezes tão pequenos, podemos verdadeiramente fazer algo em nossas vidas qua valha a pena, nos faça refletir sobre tudo e AGIR, antes que a vida passe e nos reste somente lamentar..... Excelente história, atores, direção, trilha sonora, efeitos visuais e principlamente, excelente maneira de nos transmitir a mensagem!

Eu me remexo muito- Madagascar- Português - Vídeo



Vamos descontrair um pouquinho. Vamos dançar com as crianças.
De uma chance a paz .

Let's Groove - Earth wind and fire -


Adora também está band , Que marcou os anos 70/80.

YARBROUGH & PEOPLES - DONT STOP THE MUSIC



Tem um vídeo do youtube , dizendo que, esta musica é do, The SoS Band , mas não é . Ela pertence ao grupoYARBROUGH & PEOPLES - DONT STOP THE MUSIC, essa musica nos finais dos anos 70 inicio dos anos 80 fez muito sucesso . Adoro esta música. Quando escuto saio dançando. Boa noite, Bom dia, boa tarde. A vc que me visitou. Valeu Bom final de semana.

Epistemoligia genética. Acomodaçãoe assimilação. Piaget.


Este assunto é estudado em epistemologia genética. Nos cursos de licenciatura, normal superior, pedagogia psicologia e outros.

Epistemologias genéticas de Piaget, que é o estudo das transformações que ocorrem no ser nos processos de desenvolvimento. Ao estudar este processo Piaget estabelece 4 fases, nessa ordem: Assimilação, Acomodação, Esquemas e Equilibração.De forma resumida, a Assimilação é quando há o predomínio da ação do sujeito sobre o objeto, essa fase é predominante na criança de 0 a 2 anos, fase sensório motora, quando ela quer explorar o mundo e tudo a sua volta.A Acomodação é predominante na fase seguinte, crianças de 2 a 7 anos, pré-operatória, quando inverte a relação: Há o predomínio da ação do objeto sobre o sujeito, nessa fase a linguagem tem papel preponderante, a criança quer externar seus conhecimentos.São processos distintos, porém, interdependentes, apesar de haver o predomínio em alguma fase da vida da criança, eles acontecem simultaneamente, são indissociáveis.

Vamos dar o reforço.

Jean Piaget foi um psicólogo suíço, falecido em 1980. Assimilação: representa o processo da introdução ordenada de dados conhecidos ou novos na experiência, de acordo com os > esquemas existentes em um indivíduo.Adaptação: para Piaget, é o equilíbrio dinâmico entre os processos da > assimilação > e da > acomodação. Com isso chega-se a equilibração. Equilibração: é o processo de assimilação e acomodação. Ocasionando a equilibração.
A equilibração é um processo fundamental no desenvolvimento do pensamento e tem origem na necessidade que o homem sente de equilíbrio quando a criança se defronta com teses contraditórias e conflitos. Então através da > assimilação e > acomodação, a criança pode vencer as contradições e estabelecer o equilíbrio.Acomodação: é o processo que ocorre quando o indivíduo se defronta com um novo problema e tenta, através da modificação de seu modo de comportar-se e pensar até então vigente, resolver o novo problema. Os > esquemas já existentes no indivíduo são assim modificados pela adaptação aos novos aspectos do problema emergente.Isto demonstra que a acomodação e assimilação se complementam mutuamente e são elementos do processo de abordagem ativa do ser humano.Neste sentido, o adulto faz mais acomodações, e as crianças mais equilibrações



Aprenda bem estes conceitos. Bom final de semana.


Referências.


DICIONÁRIO DE PSICOPEDAGOGIA E PSICOLOGIA EDUCACIONAL, Reinhard Brunner e Wolfgang Zeltner. ed. Vozes, 2007.PIAGET - COLEÇÃO OS PENSADORES. autor. Jean Piaget. editora / data. Abril Cultural. 1983.


Autor, João C. Maria aluno unoparvirtual.


Obrigado, pela visita.


Waldez Ludwig - Programa do Jô - Parte. Como viver num mundo, com pouco emprego.

A seguir uma entrevista com um dos maiores (Waldez Ludwig), palestrantes sobre Rh e Aministração. No programa do Jô. valeu a pena conferir.



Estes vídeos estão em 3 partes, que você vê no menu desta tela virtual. Obrigado pela visita.

Conversas sobre Didática,